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ABSTRACT 
One of the challenging issues in today’s competitive world for servicing companies is uncertainty in 
some factors or parameters that they often derive from fluctuations of market price and other reasons. 
With regard to this subject, it would be essential to provide robust solutions in uncertain situations. 
This paper addresses an open vehicle routing problem with demand uncertainty and cost of vehicle 
uncertainty. Bertsimas and Sim’s method has been applied to deal with uncertainty in this paper. In 
addition, a deterministic model of open vehicle routing problem is developed to present a robust 
counterpart model. The deterministic and the robust model is solved by GAMS software. Then, the 
mean and standard deviations of obtained solutions were compared in different uncertainty levels in 
numerous numerical examples to investigate the performance of the developed robust model and 
deterministic model. The computational results show that the robust model has a better performance 
than the solutions obtained by the deterministic model. 
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1. Introduction1 
Open Vehicle Routing Problem (OVRP) is a 
well-known vehicle routing problem with many 
applications in the real world. This problem has 
been developed to decrease the cost of good 
transportation and servicing customers regarding 
increasing their satisfaction. In another 
classification, OVRP is an optimization problem. 
Optimization problems can be divided into two 
general categories. They are optimization in 
deterministic and non-deterministic spaces. 
Optimization aim is to find the best acceptable 
solution according to the available constraints 
and problem information. The values of all 
parameters in deterministic optimization 
problems are assumed to be known. However, 
problems often require deciding in the presence 
of uncertainty. In many real-life situations, there 
are parameters that their values do not reflect 
specified certainty. Because it is not possible to 
estimate the exact values of parameters in reality, 
in these kinds of problems, considering 
uncertainty in the decision-making process may 
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lead to more stable solutions. That is why the 
uncertainty has recently attracted the attention of 
researchers. Moreover, it is necessary to embed 
the uncertainty in the model with a proper 
approach. 
The presented approaches to deal with the 
uncertainty include stochastic programming, 
fuzzy programming, and robust programming. 
The first approach, i.e., stochastic programming, 
was introduced in the 1950s by Dantzig et al. [1]. 
Applying this approach is for probabilistic 
uncertainty. It means that scenarios with different 
occurrence probabilities are presented. By 
increasing the number of scenarios, the problem’s 
dimension will increase, and leading to a 
computational challenge. 
Based on the type of data uncertainty set, robust 
optimization problems are divided into three 
types: interval set uncertainty, set of elliptical 
uncertainties, and uncertainty set in the scenario. 
The robust optimization considers an uncertainty 
bounded set instead of knowing the probability 
distribution. Because of OVRP importance in 
uncertain space in the real world, OVRP and its 
literature in the presence of uncertainty were 
investigated. 
The first person who addressed the real-life 
application on OVRP was Bodin [2]. Then 
Sariklis and Powell [3] developed OVRP, and 
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they used a heuristic method for solving this 
problem. It has been used for companies that they 
have not enough vehicles to service to all 
customers, or they have no vehicles at all. In this 
problem, the vehicles are not obligated to return 
to the distribution depot after servicing the last 
customer on its route [4, 5]. The main difference 
between OVRP and vehicle routing problem 
(VRP) is the type of route; OVRP and VRP are 
consists of Hamiltonian paths and Hamiltonian 
cycles, respectively [6]. The aim of OVRP is to 
find the minimum number of vehicles that are 
required to service all of the customers’ demands. 
In this paper, the goal of OVRP is to decrease the 
cost of traveling and the cost of using vehicles. 
For solving OVRP, many methods have been 
used; for example, Fleszar et al. [6] applied 
variable neighborhood search (VNS) to solve it, 
that VNS is a heuristic method. 
Generally, the presented methods to solve OVRP 
are divided into three categories; contains exact, 
heuristic, and meta-heuristic.  Fu et al. [7] used a 
heuristic method, which prohibited searching for 
solving OVRP with capacity constraint and 
maximum path length. Liu et al. [8] used a meta-
heuristic method of hybrid genetic algorithm for 
solving OVRP. Tarantilis et al. [9] selected list 
based threshold accepting algorithm (LBTA) to 
solve it. Letchford et al. [10] applied an exact 
method branch-and-cut. Li et al. [11] selected a 
record-to-record traveling heuristic algorithm and 
simulated an annealing meta-heuristic algorithm. 
Pisinger and Ropke [12] used an adaptive large 
neighborhood search. Repoussis et al. [13] 
considered a hybrid evolution strategy as a 
method to solve OVRP. Salari et al. [14] 
improved the integer linear programming 
heuristic method. MirHassani and Abolghasemi 
[15] applied a particle swarm optimization 
algorithm. López-Sánchez et al. [16]  solved by a 
competitive algorithm with several starting 
points. Marinakis and Marinaki [17] used a 
bumble bees mating optimization algorithm for 
OVRP. Zachariadis and Kiranoudis [18] handled 
meta-heuristic methods based on local search. 
Cao et al. [19] considered the OVRP with 
uncertain demands and solved the robust 
optimization model by an improved differential 
evolution algorithm. Eduardo et al. [20] 
investigated a multi-depot OVRP and proposed 
new mixed-integer programming. Cao and Lai 
[5] considered an OVRP with fuzzy demands, 
and a hybrid intelligent algorithm solves its 
model. Liang et al. [21] considered a goal-robust-
optimization model and proposed a heuristic 
algorithm and a particle swarm optimization 
based on genetic algorithms to solve OVRP with 

demand uncertainty [22] . Solved a robust 
counterpart model of open capacitated vehicle 
routing problem using LINGO and branch and 
bound solver to obtain the optimal routes. 
Yangkun et al. [23] solved an OVRP with soft 
time windows by Tabu Search algorithm. 
Yangkun, et al. [24] developed a capacitated 
OVRP with split deliveries by order considered 
and proposed an adaptive tabu search algorithm 
to solve it. 
Some papers considered a robust vehicle routing 
problem. Sungur et al. [25] introduced the robust 
capacitated vehicle routing problem. They 
presented a branch-and-cut-based to solve the 
problem under uncertain customers’ demands and 
uncertain travel times. Lee et al. [26] considered 
a dynamic programming algorithm to solve 
vehicle routing problems with uncertain demand, 
uncertain deadlines and uncertain travel time. 
Agra et al. [27] investigate the vehicle routing 
problem with time windows, and travel time 
uncertainty in which both time windows and 
travel time are modeled as interval data. Then, 
they adopted different robust optimization tools 
to handle the uncertainty. 
In this paper, a comprehensive review has been 
done in OVRP and articles that considered 
stochastic OVRP. The related literature review 
presented in Table 1 and Figure 1 implies that the 
robust OVRP area is limited. Although OVRP 
has a special position in the real world because of 
its application, most research deterministic 
models have been addressed. Investigations 
indicate that none of the studies have addressed 
OVRP with customer demand uncertainty and 
vehicle uncertainty costs. Most of the research 
solved deterministic OVRP. However, in the real 
world, parameters are often uncertain, and it is 
needed to describe these non-deterministic 
parameters in the model. 
According to the best of the authors’ knowledge, 
there is no paper in the related literature to 
address OVRP with both demand uncertainty and 
cost of vehicles uncertainty under a robust 
approach. The robust counterpart model is 
presented, in which customers’ demands and cost 
of vehicles belong to specific bounded uncertain 
sets with expected value and nominal value. 
Among the previous research works, most of 
them considered customer demand and cost of 
vehicles as deterministic parameters, while these 
parameters are stochastic in the real-life. The 
effect of these uncertain parameters on the 
considered OVRP model in this paper, as the 
review of related literature showed, had not been 
addressed with a robust optimization approach by 
now. 
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There are some approaches to handle uncertainty. 
Following some significant drawbacks in using a 
stochastic approach have been pointed out. In 
stochastic optimization, obtaining the actual 
probability distribution of the uncertain 
parameters is difficult because there is no enough 
historical data for the uncertain parameters in 
many real cases. Also, the solution could be 
infeasible in stochastic optimization. Although 
the probability of this occurrence is small, it can 
lead to high costs. 
Moreover, in the scenario-based stochastic 
programming approach, increasing the number of 
scenarios causes a more computational challenge 

in modeling the uncertainty. Through a 
framework of handling the uncertainty of 
parameters in optimization problems, robust 
optimization can immunize the optimal solution 
for any realizations of the uncertainty in a given 
bounded uncertainty. The proposed robust model 
in handling uncertainty in parameters will 
generate robust optimal solutions [28]. Regarding 
the drawbacks mentioned above of stochastic 
optimization models, the robust model is more 
efficient compared to other approaches. The 
circular diagram in Figure 1 demonstrates the 
result of the literature review. 

 

 
Fig. 1. Comparison of a large amount of primitive research 

 
The remainder of this paper is presented as 
follows. In Section 2, concepts regarding 
uncertainty and OVRP have been explained. 
Also, the robust OVRP with uncertain demand 
and cost of vehicles uncertainty have been 
described after that, the robust optimization 
model, which is based on Bertsimas’ model, has 
been presented. In section 3, some numeric 
examples solve in different sizes. In Section 4, 
the obtained results are analyzed. Finally, Section 
5 is devoted to the conclusions and suggestions 
for future studies. 

comparison of deterministic and robust models adopted in 
researches 

Stochastic OVRP deterministic OVRP
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Tab. 1. literature review of OVRP in selected papers 

Papers  Objective  Number of 
objectives  

Demand 
 

Modelling 
 

Uncertainty 
 

Solution Method 

Deterministic Stochastic LP MLP robust fuzzy Probability exact heuristic Meta-
heuristic hybrid 

Yannis Marinakis, Georgia-
Roumbini Iordaniduo, 
Magdalene Marinaki (2013) 
[29] 

 

Minimizes 
distance (length) 
of the route 
traveling of 
vehicles 

 1                

Cao Erbao, Lai Mingyong 
(2010) [5]  

minimizing total 
planned travel 
distance, 2. 
minimize total 
additional travel 

 2                

Cao Erbao, Lai Mingyong, 
Yang Hangming (2014) 
[19] 

 

minimizing 
transportation 
cost, and 
unsatisfied 
demands 

 2                

Vahid Baradaran, Amir 
Shafaei, AmirHossein 
Hosseinian (2019) [30] 

 

minimize total 
transportation 
costs and 
maximize 
satisfaction of 
customers 

 2                

Yong Shi, Toufik 
Boudouh,Olivier 
Grunder(2016) [31] 

 minimize total 
distance  1                

Yannis Marinakis (2015) 
[32]  minimize 

distance  1                

Liang Sun, Bing Wang 
(2018) [21]  

minimize 
undesirable 
deviations from a 
predetermined 
time window 

 1                

 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

6-
02

 ]
 

                             4 / 20

https://www.iust.ac.ir/ijieen/article-1-1015-fa.html


5 Open Vehicle Routing Problem with Robust Optimization Approach 
 

International Journal of Industrial Engineering & Production Research, September 2021, Vol. 32, No. 3 

2. Model OVRP with Uncertain 
Parameters (Demand and Cost of Vehicle) 
2.1. Problem description 
OVRP is one of the prominent developments in 
the basic model of vehicle routing problem. 
Because of its many applications in the real world 
is one of the most important and challenging 
combinational optimization problems. The 
purpose of OVRP is to service many customers 
with a fleet of vehicles, which are not obligated 
to come back to the distribution depot [4-5-19]. 
In the classic OVRP, there is a central 
distribution depot and a certain number of 
vehicles with a given capacity. Each route 
contains only one vehicle to serve several 
customers on the same route. In this problem, in 
addition to decreasing transportation costs and 
unmet demands, we intend to satisfy all 
constraints. OVRP is an NP-Hard problem; 
therefore, different heuristics and meta-heuristics 
have been used to solve it. 
Another important development in this area is to 
bring OVRP closer to the real world by 
considering uncertain parameters. 
Demand and cost of vehicle parameters are 
considered uncertain parameters and they belong 
to a bounded set. These parameters are in demand 
constraints and objective function. In following 
the robust approach that is proposed by Bertsimas 
and Sim in 2004 [33], was used. The application 
of robust optimization is to control the 
uncertainty in this problem. In this paper, demand 
constraint and objective function determinately 
have been presented; after that, the robust 
approach in the mathematical model is applied. 
The main contribution of mathematical 
formulations in this paper is the demand 
constraint and objective function, which have 
been modified under uncertain circumstances. 
Constraint 1, ∑ ௝௡ݍ

௝ (∑ ௜ܺ௝
௞ ) ≤௡

௜ୀଵ ܳ				 ⩝ ݇ =
1,2, … ܭ, , presents demand constraint in 
deterministic, which ݍ௝  is a determinate 
parameter. The objective function of the 
deterministic model is presented by this 
formula ݊݅ܯ		 ∑ ௞ܹܼ௞௄

௞ୀଵ +
∑ ∑ ∑ ௜௝ܥ ௜ܺ௝

௞௡
௝ୀ଴

௡
௜ୀ଴

௞
௞ୀଵ , which ௞ܹ  is cost of the 

vehicle, and it has been considered as a 
determinate parameter. According to the 
assumption of this study, ݍ௝ 	 and ௞ܹ  are 
considered as uncertain parameters. The 
deterministic objective function and demand 
constraint have been substituted for the Robust 
counterpart of the objective function, and robust 
counterpart constraint while ௞ܹ  and ݍ௝  are 
uncertain parameters. In continue, we intend to 
indicate how to apply the robust approach to 

handle the uncertainty in OVRP. After that, 
problem assumption, model parameters, decision 
variables and mathematical model (constraint 7 to 
22) have been introduced. 
 
Demand constraint determinately: 
 

෍ݍ௝

௡

௝

(෍ܺ௜௝௞ ) ≤
௡

௜ୀଵ

ܳ				 ⩝ ݇

= 1,2, …  ܭ,
 

            (1) 

In equation (1) ݍ௝ is supposed as an uncertain 
parameter, and it can be changed in a preset 
interval like this[ݍ௝	 − ො௝ݍ ௝ݍ,	 +  ො௝] at worst all ofݍ
௝ݍ  will be changed, but the probability of such a 
situation occurring when all parameters reach 
their maximum value is very low in reality so 
maximum number of parameters that they can 
change in the interval set are represented by Γ. Γ 
is a symbol that it can change in[0, หܬ௝ห]. In this 
interval |ܬ௝| represent number of uncertain 
parameters in ݆௧௛  row of the coefficient matrix of 
the constraint. ܬ is a set that it define into 
ܬ = ൛݆|	ݍො௝ > 0ൟ. In continues, the robust 
counterpart of this constraint is presented. 
 

		෍ݍ௝
௡

௝ୀଵ

(෍ܺ௜௝௞ )
௡

௜ୀଵ

+
	max 	

൛S│S		J, |S| ≤ Γ୩ൟ	ቐ
෍qො ୨෍X୧୨

୩
୬

୧ୀଵ

୬

୨ୀଵ

ቑ

≤ܳ				,⩝ ݇ = 1,2, …  ܭ,
 

  (2) 

For the linearization of the above constraint, the 
conservatism function ߚ(߁௞) have been 
considered as follows: 
 
(௞߁)ߚ

=
ݔܽ݉

൛ܵ│ܵ	ܬ	, |ܵ| ≤ ௞ൟ߁
ቐ෍ݍො௝

௡

௝ୀଵ

෍ܺ௜௝௞
௡

௜ୀଵ

ቑ 

 

  (3) 

The conservatism function can be expressed as 
the following, model 1 
 

(௞߁)ߚ = ො௝ݍ෍ݔܽ݉
௡

௝ୀଵ

௝෍ߤ ௜ܺ௝
௞

௡

௜ୀଵ

 

 

෍ߤ௝ ≤ ௞߁

௡

௝ୀଵ

 

 

 Model 1 
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0 ≤ ௝ߤ ≤ 1						,⩝ j	ϵJ 
 
The considered dual variables are ߠ௞ 		, ௝ܲ then 
dual of the model 1 has been presented as 
follows: 
 

௞߁௝ߠ		݊݅݉					 +෍ ௝ܲ

௡

௝ୀଵ

 

 

௝ߠ + ௝ܲ ≥ ො௝෍ݍ ௜ܺ௝
௞

௡

௜ୀଵ

										⩝ j	, k			 

 
௝ߠ ≥ ௝݌					,				0 ≥ 0									 ⩝ j ∈  ܬ

  Model 2 
 

 
According to the dual strong theory, model 1 and 
its dual for all ߁௞ ∈ [0	,  are boundaries and [|ܬ|
feasible, so they have the same objective function 
value in optimal like as follows: 

(௞߁)∗ߚ = ௞߁∗௝ߠ + ෍ ௝ܲ
∗

௡

௝ୀଵ

 

 

        (4) 

∗௝ߠ							ݐℎܽݐ	݋ݏ + ௝ܲ
∗ ≥ ො௝෍ݍ ௜ܺ௝

௞	∗
௡

௜ୀଵ

         (5) 

 
Then model 2 has to be substituted for equation 
(2). The robust counterpart constraint will be as 
follows. 
 

෍ݍ௝

௡

௝ୀଵ

෍ܺ௜௝
௞

௡

௜ୀଵ

+ ௞߁௝ߠ +෍ ௝ܲ

௡

௝ୀଵ

≤ ܳ 

 

௝ߠ + ௝ܲ ≥ ො௝෍ݍ ௜ܺ௝
௞

௡

௜ୀଵ

													⩝ j	, k			 

 
௝ߠ ≥ 0			,				 ௝ܲ ≥ 0 

 

  Model 3 

 
Then a variable like ݐ௝௞		 has been defined and 
substituted ∑ ܺ௜௝

௞௡
௜ୀଵ  for ݐ௝௞		, after that a 

constraint like  ݐ௝௞		 ≤ 	∑ ௜ܺ௝
௞௡

௜ୀଵ   has been added. 
So, the robust counterpart constraint will be as 
follows: 
 

෍ݍ௝
௡

௝ୀଵ

௝௞ݐ + ௞߁௝ߠ + ෍ ௝ܲ

௡

௝ୀଵ

≤ ܳ 

 
௝ߠ + ௝ܲ ≥ ௝௞ݐො௝ݍ 													⩝ j	, k			 

		௝௞ݐ ≤	෍ ௜ܺ௝
௞

௡

௜ୀଵ

														⩝ j	, k		 

  Model 4 

௝௞ݕ− ≤ ௝௞ݐ ≤ ௝௞ݕ 										 ⩝ j	, k			 
 

௝ߠ ≥ 0			,				 ௝ܲ ≥ 0 
 

Similar to the uncertain demand constraint, the 
uncertainty for the cost of the vehicle ( ௞ܹ) in the 
objective function will be considered. The 
objective function of the deterministic model has 
been shown in equation 6. 
 

෍݊݅ܯ		 ௞ܹܼ௞
௄

௞ୀଵ

+ ෍෍෍ܥ௜௝ ௜ܺ௝
௞

௡

௝ୀ଴

௡

௜ୀ଴

௞

௞ୀଵ

 

 

       (6) 

The Robust counterpart of objective function 
when ௞ܹ is an uncertain parameter will be as 
follows: 
 

෍݊݅ܯ		 ௞ܹܼ௞
௄

௞ୀଵ

+ ଴ܼ଴߁ + ෍ܲ ௞ܲ
௞

+ ෍෍෍ܥ௜௝ ௜ܺ௝
௞

௡

௝ୀ଴

௡

௜ୀ଴

௞

௞ୀଵ

 

ܼ଴ + ܲ ௞ܲ ≥ ෡ܹ௞ܼ௞  
ܼ଴ ≥ 0				,				ܲ ௞ܲ ≥ 0	 

 Model 5 

 
2.2. Assumptions 
In this section, characteristics of robust OVRP 
considered in this study is presented as follows: 
(1) Type of customers’ demand is delivery. 
(2) Location of each customer is considered as 

a node. 
(3) The cost depends on both the travelling 

distance and the number of active vehicles. 
(4) The number of vehicles is specified, that 

the maximum number of them is N. 
(5) The capacity of each vehicle is limited, and 

the vehicles are not homogeneous. 
(6) In this paper planning horizon of OVRP is 

a single-period. 
(7) The problem has only one distribution 

depot. 
(8) Both the customers’ demand and the cost 

of vehicles are uncertain. 
(9) The objective function of the problem in 

this paper is single-objective without time 
constraints. 

 
2.3. OVRP formulation 
The mathematical model of OVRP with demand 
uncertainty and cost of vehicles uncertainty is 
presented as follows.  
 
Model parameters: 
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- N in the graph G(V, A) is the number of total 
nodes, including depot and customer nodes 
- K number of total vehicles 
௜ݍ -  demand of i-th customer 

-	ܳ capacity of each vehicle 
 ௜௝ travel cost from i-th node to j-th nodeܥ -
-	 ௞ܹ  cost of k-th active vehicle  

 
2.4. Decision variables 
 ௜ܺ௝

௞ = ൜1				݂݅	ݐℎ݁	݇ − ,	݅	݊݁݁ݓݐܾ݁	ܿݎܽ	ℎ݁ݐ	ݏ݈݁ݒܽݎݐ	ℎ݈݅ܿ݁݁ݒ	ℎݐ ݆																																																															 ⩝ ݅, ݆єܸ				و ⩝ ݇єܭ	
0																																				Otherwise																																																																																																				

 

		ܼ௞ = ቄ1				݂݅	ݐℎ݁	݇ − 																																																																																				݁ݒ݅ݐܿܽ	ݏ݅	ℎ݈݅ܿ݁݁ݒ	ℎݐ ⩝ ݇єܭ																		
0																																						Otherwise																																																																																																				

 

ܸ ௨݂
௞ = ቄ1				݂݅	ݐℎ݁	ݑ − ݇	ݕܾ	ݐ݅ݏ݅ݒ	݋ݐ	ݐݏ݈ܽ	ݏ݅	ݎ݁݉݋ݐݏݑܿ	ℎݐ − 														݁ݒ݅ݐܿܽ	ݏ݅	ℎ݈݅ܿ݁݁ݒ	ℎݐ ⩝ ݇єK								

0																																			Otherwise																																																																																																																
 

 
V is a Positive integer variable. 
௝ߠ 	, ௝ܲ        Dual variables for linearizing function protective constraint    
ܼ଴		, ܲ ௞ܲ   Dual variables for linearizing conservatism objective function 
 
So, the developed model of OVRP under demand uncertainty and cost of vehicles uncertainty as follows: 
 

෍݊݅ܯ		 (7) ௞ܹܼ௞
௄

௞ୀଵ

+ ଴ܼ଴߁ + ෍ܲ ௞ܲ
௞

+ ෍෍෍ܥ௜௝ ௜ܺ௝
௞

௡

௝ୀ଴

௡

௜ୀ଴

௞

௞ୀଵ

 

 

 Subject to: 
 

(8) 
 

ܼ଴ + ܲ ௞ܲ ≥ ෡ܹ௞ܼ௞  

(9) 
		෍෍ ௜ܺ௝

௞ = 1
௡

௜ୀ଴

௞

௞ୀଵ

											⩝ ݆ = 1,2, … ,݊	 

(10) 	෍ ௜ܺ௨
௞

௡

௜ୀ଴

= ෍ܺ௨௝௞ + ,ݑ)	݂ܸ ݇)		
௡

௝ୀଵ

				 ⩝ ݇ = 1,2, … 					ܭ, ⩝ ݑ = 1,2, … ,݊ 

(11) 
 
௜ܸ
௞ − ௝ܸ

௞ + |݊| ∗ ௞	௜௝ݔ ≤ |݊|− 1		 ⩝ ݅ = 0,1,2, … ,݊	,⩝ ݆ = 0,1,2, … ,݊	 ⩝ ݇ = 1,2, …  	ܭ,
   

(12) 
 ෍ݍ௝

௡

௝ୀଵ

௝௞ݐ + ௞߁௝ߠ + ෍ ௝ܲ

௡

௝ୀଵ

≤ ܳ										 ⩝ ݇ = 1,2, …  ܭ,

  
௝ߠ (13) + ௝ܲ ≥ ௝௞ݐො௝ݍ 													⩝ j	, k			 

  

		௝௞ݐ (14) ≤	෍ ௜ܺ௝
௞

௡

௜ୀଵ

														⩝ j	, k		 

  
௝௞ݕ− (15) ≤ ௝௞ݐ ≤ ௝௞ݕ 										 ⩝ j	, k			 

  

(16) ෍ܺ௜଴௞ = 0				 ⩝ ݇ = 1,2, … ܭ,
௡

௜ୀଵ

 

 

(17) ෍ܺ଴௝௞ ≤ 1				 ⩝ ݇ = 1,2, … ܭ,
௡

௝ୀଵ
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(18) ܺ௜௝௞ ≤ ܯ݃݅ܤ ∗ ௞ݖ 				 ⩝ ݇ = 1,2, … 			,ܭ, ⩝ ݅ = 0,1,2, … ,݊			,⩝ ݆ = 1,2, … ,݊ 
  

(19) ܺ௜௝௞ є{0,1} 		 ⩝ ݇ = 1,2, … 				,ܭ, ⩝ ݅ = 0,1,2, … ,݊			,⩝ ݆ = 1,2, … ,݊ 
  

௞є{0,1}ݖ (20) 			⩝ ݇ = 1,2, …  ܭ,
  

(21) Vf௨୩є{0,1} 			⩝ ݇ = 1,2, …  ܭ,
  

(22) ܼ଴ ≥ 0				,				ܲ ௞ܲ ≥ 0	  
௝ߠ ≥ 0			,				 ௝ܲ ≥ 0 

 
The presented model is the robust counterpart of 
the deterministic mathematical model that it is 
based on the model proposed by Mir Hassani et 
al. [15] with some modifications. 
 

3. Computational Experiments 
In this section, we intend to make a comparison 
between the deterministic model and the 
uncertain model. The model's performance under 
deterministic and uncertain parameters is 
compared in several sizes of the problem, results 
obtained from GAMS are reported in Figures 2 to 
11 for each size of the problem. Each figure 
shows one size of the problem. In each figure, 
when Γ is equal to 0, means the model has been 
performed under deterministic and under 
uncertainty Γ is equivalent to three amounts (0.2, 
0.5, and 1) First different sizes of the problem 
have been selected that minimum and maximum 
size of them are N7-K2 and N41-K14, 
respectively. For each size of the problem, the 
model was performed under three levels of 
uncertainty (Γ= 0.2, 0.5, 1). When the value of Γ 
is equal to 0, it means all parameters are 
deterministic. Robust optimization is used to 

manage uncertainty. Values of both robust and 
deterministic parameters are generated by 
random distributions specified; these values are 
presented in Table 2 as the nominal data. Then in 
Table 3, values of objective function under 
nominal data and each uncertainty level (Γ) is 
computed for each size of the problem. Also, 
computing time has been presented for both the 
robust and deterministic models. The following 
five random realizations under each uncertainty 
level and fifteen random realizations under Γ=0 
are generated to compare the mean deviation and 
standard deviation of objective function values 
under these realizations. Figures 2 to 11 describe 
objective function values under realizations of 
each Γ as the interval plot for each size of the 
problem. 
In this problem, the capacity of heterogeneous 
vehicles (ܳ௞) was generated from the Uniform 
Integer distribution function. The customer 
demand parameter (ݍ௝) has been generated from 
the Normal distribution function. Other 
parameters (ݓ௞  ௜௝) have beenܥ ෝ௞, andݓ ,ො௝ݍ ,
generated from the Uniform distribution function. 

 
Tab. 2. Nominal data 

Parameter Distribution of generation random 
௝ݍ  (125,20)݈ܽ݉ݎ݋ܰ			~ 
 (300,700)݉ݎ݋݂݅݊ݑ				~ ௞ݓ
 (4,30)݉ݎ݋݂݅݊ݑ				~ ො௝ݍ
 (20,80)݉ݎ݋݂݅݊ݑ				~ ෝ௞ݓ
ܳ௞ ~			(700,800)ݐ݊݅݉ݎ݋݂݅݊ݑ 
 (20,120)݉ݎ݋݂݅݊ݑ				~ ௜௝ܥ

 
All different instance sizes of the problem in both 
the deterministic and robust model have tested in 
GAMS 23.5 software by computational 
experiment on a personal computer with 2.53 
GHz Intel(R) Core(TM) i5 CPU with 4 GB RAM 
under Windows 8.1 environment.  
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Tab. 3. Comparison of objective function values under nominal data and computational 
time 

Problem 
Size 

Uncertainty 
level(Γ) 

 Objective Function values 
under nominal data 

 Computational time (s) under 
nominal data(s) 

 deterministic robust  deterministic robust 
N7-K2 0.2  532.132 538.047  0.328 0.122 

 0.5   546.918   0.354 
 1   561.703   0.330 
        

N9-K3 0.2  601.824 615.795  0.919 0.254 
 0.5   636.751   0.567 
 1   671.678   0.252 
        

N11-K4 0.2  764.369 771.799  0.354 0.846 
 0.5   782.943   0.519 
 1   801.518   0.526 
        

N15-K5 0.2  712.807 718.219  0.460 0.666 
 0.5   726.337   0.807 
 1   739.868   0.968 
        

N23-K8 0.2  982.569 997.770  7.787 7.557 
 0.5   1020.572   7.631 
 1   1045.811   10.295 
        

N31-K10 0.2  1106.616 1115.337  6.207 7.725 
 0.5   1128.517   8.027 
 1   1150.417   11.594 
        

N41-K14 0.2  1273.118 1281.935  31.283 27.953 
 0.5   1295.159   31.318 
 1   1317.199   53.856 

 
4. Comparison of Deterministic and 

Robust Models 
In this section, some different sizes of the 
numerical examples will be considered to 
illustrate the comparison between deterministic 
and uncertain. The considered model is the one in 
which we have just discussed and showed how to 
control uncertainty. Ten types of experimental 
conditions are made based on the size of OVRP. 
It is assumed that there are six customers and two 
vehicles for the small size (N7-K2) and 40 
customers and 14 vehicles for the large size 
problem (N41-K14). The other sizes of the 
problem are N9-K3, N11-K4, N15-K5, N17-K7, 
N20-K8, N23-K8, N27-K9, N31-K10, which N-1 
indicates the number of customers and K depicts 
the number of the active vehicles. As we know, 
the active vehicles are the ones that have been 
utilized to serve customers. In each experiment, 
the coordinates of all customers and vehicles are 
randomly considered. In order to evaluate the 
performance of the results represented in Table 4, 
outcomes are presented in the interval plot. 

Figures 2 to 11 display the interval plot under 
different uncertainty levels for the problem with 
various sizes. The interval plot indicates the 
amount of objective function with Regard to the 
objective function values under realizations for 
both deterministic and uncertain in Table 4. 
According to Table 4, it has been seen that in all 
problem sizes, maximum and minimum values of 
the objective function of the deterministic model 
dominate the maximum and minimum values of 
the objective function in a robust model. It means 
that the maximum value of the objective function 
in the deterministic model is more significant 
than the maximum objective function values of 
all uncertainty levels in the robust model, and its 
minimum value is less than minimum values 
under all uncertainty levels of the robust model. 
The said feature justifies for all problem sizes 
except the minimum value of size N11-K4 under 
Γ=0.5 and maximum value of size N41-K14 
under Γ=1, but under other levels, the values are 
dominated by values of the deterministic model. 
Although the minimum objective function value 
under Γ=0.5 in size N11-K4 is less than the value 
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of the deterministic model, its maximum has the 
lowest value compared to the maximum value of 
the other levels and the maximum value of the 
deterministic model. Also, concerning the size 
N41-K14, the maximum value of an objective 
function under Γ=1 of robust model is larger than 
the maximum value of the deterministic model. 
In contrast, its minimum value has the largest 
value compared to the same value under other 
uncertainty and the minimum value of the 
deterministic model. 
That is important to evaluate the model’s 
performance with respect to standard deviation. 
Standard deviation and model performance have 
an inverse relation. It means in the lower value of 
standard deviation, the model’s performance will 
be better and vice versa. In all sizes of problems, 
the standard deviation of the deterministic model 
is larger than the robust model. Figure 12 
illustrated this issue clearly. Some sizes of 
problems with low standard deviation values are 
slight differences between the maximum and 
minimum objective function values under each 
uncertainty level. In Table 4 and Figure 2, it can 
be stated for Γ=0, the mean value of the objective 
function of the deterministic model is equal to 
746.872, and it expresses for Γ=0.2, 0.5, 1, the 
mean value of the objective function is equal to 
653.239, 651.850, 785.194 respectively. Also, the 
standard deviation values for deterministic and 
robust model under Γ=0, 0.2, 0.5, 1 are 124.057, 
73.365, 86.762, 80,380 respectively. In Figure 2, 
although the 95 percent confidence interval for 
the data means for Γ=0 is smallest compared to 
the obtained solutions by other uncertainty levels 
in the robust model, it has a more significant 
standard deviation than the robust model. In this 
size (N7-K2) of the problem, the mean values in 
the uncertainty levels Γ=0.2, 0.5 are smaller than 
the value obtained by the deterministic model. 
Table 4 and Figure 3, in size(N9-K3) of the 
problem as the mean values of objective function 
under Γ=0, 0.2, 0.5, 1 are 729.627, 712.820, 
710.568, 756.926 respectively, that mean values 
for Γ=0.2, 0.5 are minimum compared with Γ=0. 
Thus, although the interval of the mean value in 
the deterministic (Γ=0) is smaller than the other 
mean values, its standard deviation is larger than 
the standard deviation obtained by the robust 
model. Respecting Table 4 and Figure 4, as it can 
be seen in this size(N11-K4) of the problem, the 
mean values of objective function under Γ=0, 0.2, 
0.5, 1 are 764.398, 697.393, 686.376, 787.943 
respectively that mean values for Γ=0.2, 0.5 are 
minimum compared with Γ=0. Table 4 and 
Figure 5 shows in this size (N15-K5) of the 
problem, the mean values of objective function 

under Γ=0, 0.2, 0.5, 1 are 822.977, 798.823, 
843.448, 809.234 respectively that mean values 
in Γ=0.2, 1 are minimum compared with Γ=0. 
Table 4 and Figure 6 can be expressed in this size 
(N17-K7) of the problem; the mean values of 
objective function under Γ=0, 0.2, 0.5, 1 are 
853.419, 893.802, 882.978, 890.692 respectively 
that mean value in Γ=0 is minimum. Regarding 
Table 4 and Figure 7, it can be asserted in this 
size(N20-K8) of the problem, mean values of 
objective function under Γ=0, 0.2, 0.5, 1 are 
926.496, 871.189, 993.177, 938.133 respectively 
that mean value for Γ=0.2 is minimum compared 
with Γ=0. On the subject of Table 4 and Figure 8, 
it can be stated in this size(N23-K8) of the 
problem the mean values of objective function 
under Γ=0, 0.2, 0.5, 1 are 963.565, 986.135, 
953.708, 978.948 respectively that the mean 
values in Γ=0.5 is minimum compared with Γ=0. 
Concerning Table 4 and Figure 9, it can be seen 
in this size(N27-K9) of the problem the mean 
values of objective function under Γ=0, 0.2, 0.5, 
1 are 1037.464, 1012.247, 1080.392, 1077.992 
respectively that mean values in Γ=0.2 is 
minimum compared with Γ=0. With respect to 
Table 4 and Figure 10, it can be stated in this 
size(N31-K10) of the problem the mean values of 
objective function under Γ=0, 0.2, 0.5, 1 are 
1108.372, 1117.050, 1153.060, 1157.753 
respectively that mean values in Γ=0 is 
minimum. Although the interval of the mean 
value in the deterministic (Γ=0) is smaller than 
the other mean values, its standard deviation is 
larger than the standard deviation obtained by the 
robust model. In Table 4 and Figure 11, it can be 
declared in this size (N41-K14) of the problem 
the mean values of objective function under Γ=0, 
0.2, 0.5, 1 are 1334.516, 1305.577, 1324.974, 
1381.754 respectively that mean values in Γ=0.2, 
0.5 are minimum compared with Γ=0. Although 
the interval of the mean values in the 
deterministic (Γ=0) is smaller than the other 
mean values, its standard deviation is larger than 
the standard deviation obtained by the robust 
model. As the results show, the robust model was 
investigated compared to the deterministic one 
concerning standard deviation and mean 
objective function values. The results imply that 
the robust model has a better performance for all 
instance sizes of problems. 
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Tab. 4. Comparison of mean and standard deviation of objective function values under realizations 

Proble
m Size  

Uncertai
nty level 
(Γ) 

 

Mean of objective function values under realizations  
Standard deviation of 
objective function values 
under realizations 

deterministic 

Min of 
deterministic 
objective 
function 
values under 
realizations 

Max of 
deterministi
c objective 
function 
values under 
realizations 

robust 
min of robust objective 
function values under 
realizations 

max of robust objective function 
values under realizations  determin

istic robust 

N7-K2 
 0.2  746.872 550.858 933.202 653.239 559.892 742.812  124.057 73.365 
 0.5     651.850 558.073 748.775   86.762 
 1     785.194 701.053 891.807   80.380 

N9-K4 

 0.2  729.627 554.715 877.964 712.820 670.432 823.564  84.605 62.635 
 0.5     710.568 632.487 806.191   63.427 
 1     756.926 665.206 835.115   74.289 

N11-
K4 

 0.2  764.398 634.551 928.583 697.393 661.286 769.559  764.398 47.192 
 0.5     686.376 619.344 772.523   62.047 
 1     787.943 753.200 851.699   38.252 

N15-
K5 

 0.2  822.977 711.074 1021.503 798.823 768.472 847.360  822.977 35.933 
 0.5     843.448 795.682 910.493   45.395 
 1     809.234 756.656 854.505   36.100 

N17-
K7 

 0.2  853.419 772.133 1158.459 893.802 851.809 1003.707  94.894 47.707 
 0.5     882.978 854.517 917.560   26.373 
 1     890.692 851.809 1003.707   63.824 
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Continue of Tab. 4. Comparison of mean and standard deviation of objective function values under realizations 

Problem 
Size  

Uncert
ainty 
level 
(Γ) 

 

Mean of objective function values under realizations  
Standard deviation of 
objective function values 
under realizations 

deterministic 

Min of 
deterministi
c objective 
function 
values under 
realizations 

Max of 
deterministi
c objective 
function 
values under 
realizations 

robust 
min of robust objective 
function values under 
realizations 

max of robust objective function 
values under realizations  determin

istic robust 

N20-K8 

 0.2  926.496 830.703 1032.026 871.189 834.780 921.937  61.250 35.774 
 0.5     993.177 948.910 1014.756   26.069 
 1     938.133 913.252 950.506   16.018 

N23-K8 

 0.2  963.565 891.557 1081.159 986.135 950.643 1001.585  61.339 20.889 
 0.5     953.708 926.754 975.825   21.079 
 1     978.948 972.801 990.113   7.102 

N27-K9 

 0.2  1037.464 940.020 1219.858 1012.247 948.891 1088.724  73.567 43.679 
 0.5     1080.392 1064.411 1095.264   11.981 
 1     1077.992 1042.904 1122.961   33.338 

N31-K10 

 0.2  1108.372 1048.789 1207.398 1117.050 1071.638 1147.409  40.365 30.691 
 0.5     1153.060 1124.996 1183.956   25.802 
 1     1157.753 1110.750 1200.586   37.320 

N41-K14 

 0.2  1334.516 1279.180 1407.378 1305.577 1275.593 1348.885  36.759 28.921 
 0.5     1324.974 1292.950 1353.450   28.555 
 1     1381.754 1361.871 1412.994   21.871 
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It is worth mentioning that an interval plot 
elaborates on the confidence interval for the mean 
of the data. Also, it shows the information on 
whether the different uncertainty levels have 

similar mean values and compares the amount of 
variation presented in each uncertainty level. The 
following conclusions can be drawn from the 
interval plot, which is given for each Figure. 
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size N7-K2
95% CI for the Mean

 
Fig. 2. Interval plot under different uncertainty levels for the problem with size N7-K2 

 
Figure 2 indicates that the amount of objective 
function for Γ=0 is higher compared to Γ=0.2, 0.5. 
For Γ=1, although the amount of variation is higher 
than Γ=0, the standard deviation is significantly 
lower compared to the Γ=0 and Γ=0.5. Since there 
is an overlap of the confidence interval for the 
Γ=0.2 and Γ=0.5, it can be concluded that the 

performance of them may be similar. In Figure 12, 
the standard deviation for Γ=0.2 is lower than 
Γ=0.5. It means the performance of robust 
approaches for Γ=0.2 is better than other 
uncertainty levels and also better than the 
deterministic model.  
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Interval plot of deterministic and robust model under gama=0, 0.2, 0.5, 1
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Fig. 3. Interval plot under different uncertainty levels for the problem with size N9-K3 

 
Since there is overlap of the confidence interval for 
the Γ=0 and other uncertainty levels in Figure 3, it 
can be concluded that the performance of them 

may be similar. The amount of the standard 
deviation based on Figure 12 for Γ=0 is 
significantly higher than other uncertainty levels. 
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For Γ=0.2, Γ=0.5 the standard deviation is similar 
approximately. The performance of robust 
approach for Γ=0.2, Γ=0.5 is higher than Γ=0 and 

Γ=1 in this size of the problem. Regarding Figure 
12, the highest performance belongs to Γ=0.2.
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Interval plot of deterministic and robust model under gama=0, 0.2, 0.5, 1

size N11-K4
95% CI for the Mean

 
Fig. 4. Interval plot under different uncertainty levels for the problem with size N11-K4 

 
In Figure 4 and Figure 12, the amount of variation 
and standard deviation for Γ=0 is higher than other 
uncertainty levels. Since there is an overlap of the 
confidence interval for the Γ=0 and Γ=1, also for 
Γ=0.2 and Γ=0.5, as it can be seen, the 
performance of them may be similar. The amount 

of objective function for Γ=0.2, Γ=0.5 is lower 
compared to other uncertainty levels. In Figure 12, 
it can be concluded that the performance for Γ=0.2 
is higher compared to the deterministic model and 
different uncertainty levels.  
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Interval plot of deterministic and robust model under gama=0, 0.2, 0.5, 1

size N15-K5
95% CI for the Mean

 
Fig. 5. Interval plot under different uncertainty levels for the problem with size N15-K5 

 
Figure 5 indicates that the amount of objective 
function for Γ=0.5 is higher compared to other 
uncertainty levels. Also, this amount is lowest for 
Γ=0.2 among other uncertainty levels. Although 
the amount of variation for Γ=0 is lower compared 

to Γ=0.5, its standard deviation is significantly 
higher compared to Γ=0.5 and other levels. Figure 
12, which presents the lowest standard deviation 
for Γ=0.2, it can be concluded that it is doing better 
than others. 
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Interval plot of deterministic and robust model under gama=0, 0.2, 0.5, 1

size N17-K7
95% CI for the Mean

 
Fig. 6. Interval plot under different uncertainty levels for the problem with size N17-K7 

 
In Figure 6, since there is an overlap of the 
confidence interval for Γ=0.2, Γ=0.5, Γ=1, it can 
be concluded that the performance of them may be 
similar. Although the amount of objective function 
for Γ=0 in deterministic model is lower compared 
to other uncertainty levels, the standard deviation 

is significantly higher than all levels in robust 
approach. The amount of variation for Γ=0.5 is 
lower than others though the mean of the objective 
function is higher than Γ=0.  The results show that 
the highest performance belongs to Γ=0.5. 
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Fig. 7. Interval plot under different uncertainty levels for the problem with size N20-K8   

 
Figure 7 indicates that the amount of objective 
function for Γ=0.2 is lowest compared to other 
uncertainty levels. Also, the amount of the 
variation for Γ=0.2 seems to be highest compared 
to others. Regarding Figure 12, it can be concluded 

that the minimum standard deviation belongs to 
Γ=1. Although the minimum amount of objective 
function is for Γ=0.2, the best performance belongs 
to Γ=1, because of the minimum variation and the 
minimum standard deviation. 
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Fig. 8. Interval plot under different uncertainty levels for the problem with size N23-K8 

 
In Figure 8, since there is an overlap of the 
confidence interval for Γ=0, Γ=0.2, Γ=1, it can be 
concluded that the performance of them may be 
similar. The amount of variation and the standard 
deviation for Γ=0 is the highest. The amount of 

objective function for Γ=0.5 is lower than other 
uncertainty levels. The standard deviation for both 
Γ=0.2 and Γ=0.5 are approximately similar. It can 
be stated that the robust model has a better 
performance in Γ=0.5. 
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Fig. 9. Interval plot under different uncertainty levels for the problem with size N27-K9 

 
In Figure 9, since there is an overlap of the 
confidence interval for Γ=0.5 and Γ=1, it can be 
concluded that the performance of them may be 
similar. The amount of variation for Γ=0.2 is 
higher than other uncertainty levels. The standard 
deviation for Γ=0 is highest than others. Although 

the amount of objective function for Γ=0.5 is 
higher compared to Γ=0.2, both its standard 
deviation and its variation are lowest among all 
uncertainty levels. Regarding the results, the robust 
approach has a better performance in Γ=0.5. 
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Fig. 10. Interval plot under different uncertainty levels for the problem with size N31-K10 

 
Although the variation for Γ=0 is lower compared 
to other uncertainty levels, its standard deviation is 
significantly higher compared to the other levels. 

Since the variation and standard deviation for 
Γ=0.5 are lower compared to Γ=0.2 and Γ=1, it has 
higher performance in the robust model. 
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Fig. 11. Interval plot under different uncertainty levels for the problem with size N41-K4 

 
Figure 11 indicates that the amount of objective 
function for Γ=0.2 is lower compared to other 
uncertainty levels. Although the amount of 
objective function for Γ=1 is higher compared to 
the other uncertainty levels, its standard deviation 
is lowest. The amount of the objective function for 

Γ=0.2 is lower compared to others. Also, the 
standard deviation for all uncertainty levels in 
robust model is lower compared to the 
deterministic model. Therefore, for Γ=0.2, the 
robust approach is doing better than others.  
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Fig. 12. Comparison of standard deviation for all sizes of numerical experiments under 

different uncertainty levels 
 
The obtained results in Table 4, Figures 2 to 11, 
and Figure 12 show that the robust strategy 
performs better. In other words, the robust model 
gained the objective function with both higher 
quality and lower standard deviation compared to 
the deterministic model. 
OVRP, in the real world concerning uncertain 
parameters, examines how to plan problems in the 
view of management and decision-making. This 
approach can propose the managerial implication 
for management in the transportation section and 
productive factories who need to manage the cost 
and time for providing better servicing. Sometimes 
transportation companies will not be able to pay 
for vehicles maintenance, so they prefer to apply 
OVRP concerning the non-deterministic 
parameters, so this approach of OVRP with 
uncertain parameters causes a better estimation of 
the problem in the real world because this problem 
plays a vital role in decreasing the cost and time.  
 

5. Conclusions and Future Studies 
The unpredictability of demand and cost 
parameters in today’s competitive world is 
challenging for manufacturers or service providers. 
Factors such as fluctuations of market price and 
economic downturns have made these parameters 
uncertain. For this reason, it is essential to provide 
solutions to adjust the uncertain parameters.  
In this paper, the demand and cost of using 
vehicles in OVRP were considered uncertain 
parameters. In order to the problem be closer to the 
real world, the transportation fleet is considered 
heterogeneous. It means the capacity of the 
vehicles is various. In dealing with uncertainty, the 

proposed approach by Bertsimas and Sims was 
applied, which is a powerful approach in 
optimization to deal with uncertain parameters. 
The reasons for the superiority of the Bertsimas 
model compared to other robust optimization 
approaches include: the robust counterpart of the 
linear programming problem itself is linear 
programming. The decision-maker determines the 
level of conservation (Γ), and unlike other robust 
optimization models, it is not necessarily the worst 
case for the parameters considered non-
deterministic. The number of variables and 
constraints in this model are less than other 
sustainable models, so the complexity of this 
model will be less. After presenting the model with 
the expressed approach, GAMS software utilized 
to solve the model. Then, ten numerical examples 
with different sizes were considered. Each size of 
the deterministic and robust model has been 
investigated under three different uncertainty 
levels. The values of objective function and 
solution time of each size of the problem were 
presented. Then five random realizations were 
generated to evaluate the performance of the 
proposed model, and the deterministic and robust 
model compared. Numerical results showed that 
the robust model concerning the mean and 
standard deviation of the objective function 
performs better. 
For future research, considering other uncertain 
parameters such as travel time can make the 
problem more applicable. This approach can also 
be applied for a wide range of vehicle routing 
problems with uncertain data, such as OVRP with 
time windows. On the other hand, this study can be 
enriched with more than one depot. 
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